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SPECTROSCOPY LETTERS, 8(9), 651-667 (1975) 

UV DYE LASERS 

G.A. Abakuaov", V.V. Fadeev', R.V. Khokh loe  A.P. Simonovl! 

Karpov Phyeical Chemistry I n e t i t u t e ,  Obukha 10, 

Yoscor 107120. 

xx Moecor Univereity, Moscow 117234. 

Introduction. 

The moat important property of visible dye laaere, that 

i s  continuous wave length tuning, etimulated the eearch f o r  
1 dyes*) capable t o  l a s e  In W. And they were founed I n  1968 . 

Now the  need In tunable UV l a e e r s  f o r  appl icat ion8 in spect- 

roacopy, photochemistry, ieotope separation, remote air  and 

sea  probing, e t c .  ie only more c l e a r l y  Been. The object  of 

t h i e  paper ie t o  review shor t ly  eome recent advancee In UV 

dye laeere .  

a) We uee the term "dye" here only due t o  t r ad i t i on .  Active 

media of the l aee re  in question a r e  c e r t a i n l y  not dyes 

i n  common sense of the word. 
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652  ABAKUMOV ET AL. 

Short  Wbve Length Limit of  a Dye Laser Light .  

The ahor tee t  wave length  emission from organic  compounds 

observed l a  t he  f luorescence of simple l i n e a r  s a tu ra t ed  hyd- 

rocarbone near  206-209 m2-4. It follows from the  experim- 

ent2'4 and the  theory5 a s  we l l  that the e f f i c i e n c y  of  t h i e  

f luoreecence is very low. Branched and c y c l i c  s a tu ra t ed  hyd- 

rocarbons f luo resce  a t  some longer  wave l eng ths  and have by 

an  o rde r  of magnitude h ighe r  quantum y i e l d s .  Prom published 

d a t a  f o r  one of  the bes t  compounds of  t he  l a t t e r  type, bicyc- 

l o h e x i l  ( f luorescence l i f e  time is 1,6 ns ,  quantum y i e l d  
ma* Ire = 0,02, f luorescence band FWHll Ayfe a 8500 cm", yft: n 

P 44200 cm'1)496 one can es t imate  the s t imula ted  emission 

c roes  sec t ion  4, to  be of the o rde r  of 10'20cm2 . Therefore 

i t  is necessary t o  have concent ra t ions  of exc i t ed  moleculea 

of about 1019cm-3 in order  t o  g e t  an ampl i f i ca t ion  f a c t o r  of 

0 , l  cm". To o b t a i n  these very high exc i ted  s i n g l e t  s ta te  

populat ions one needs B 4 t o  5 o r d e r s  of magnitude more po- 

werful  VUV pump l i g h t  source than  sources  commonly ueed t o  

pump dye lasers. There is no such eources for the time be- 

ing .  B u t  even i f  they were, laser a c t i o n  in sa tu ra t ed  hyd- 

rocarbons would be h ighly  improbable becauee of i n e v i t a b l e  

e f f i c i e n t  photochemical decomposition of  molecules pumped 

by a powerful WV r a d i a t i o n  wi th  photon energy c lose  or 

equal  t o  the i o n i z a t i o n  p o t e n t i a l  of the  compounds in l i q u i d  

s t a t e .  In such condi t ions  photochemical decomposition may be 

the  main route  for deac t iva t ion  of  molecular exc i ted  s t a t e s .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



w DYE LASERS 653 

For the eame reason hydrocarbone w i t h  i eo l a t ed  multiple 

bode do not eeem to  be promieing. Organic conpounde with a 

emall conjugated 9 -electron eyeteme and heteroatoms are 

much more perepective. Yoleculee of t h i e  k i n d  r a t h e r  etrong- 

ly abeorb r ad ia t ion  i n  the 200-280 nm range and f luoreece 

near 300 nm. Quantum y i e l d s  can be 48 high a8 0,677. Suff i -  

c i e n t  pumping can be povided by t ae  4-th harmonic of  t he  

Nd3+-glaes lamer r ad ia t ion  o r  f e e t  fleehlaape. Thue the  

ehort wave length l i m i t  o f  dye l a s e r  r ad ia t ion  etands near 

300 nm. 

Laser Pumped UV Dye Lasers. 

Since the firmt repor t  on UV dye laeere '  the  wave- 

-length of the p-terphenyl dye l aee r ,  340 mn, remains the 

ahorteet  one. Thie Pact alone shone that  i t  i e  not a eirple 

matter t o  f ind  a good compound to  be capable f o r  lamer ac t -  

i on  i n  the spec t r a l  range between 340 and 300 nm. 

We have made at tempt8 t o  achieve laser a c t i o n  i n  a 

number oP organic compounds which f luoresce between 290 and 

340 nm. Among them there  were bentimidasol, 2-methyl-benti- 

midazol, durene, anyeol, indole,  indazol a8 eolutee in etha- 

pol,  water o r  cyclohexane . Quantum yield T l f p  f o r  these so- 

l u t lone  varies from - 0,25 (durene in ethanol8) t o  0,67 

(benzimidaeol in water, pH7.I) and the eetimated stimulated 

emieaion croes eection d,, var i e s  from 0,1 x 1 0 - ~ 7 ~ ~ ~ ( d ~ -  

rene i n  ethanol) t o  1,4 X 10'17cm2 (indol i n  e thanol)  as 
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654 ABAKUMOV ET AL. 

comparod to  10'17~m2 f o r  p- ter-  

phony1 in cyclohexme. Solution8 were t ransvereely ( i n  some 

casor l ong i tud ina l l j )  pumpod by the 4-th harmonic of the 

Hd3+-gla86 l a r e r  r ad ia t ion  with a pulse power of 1-4 W. 

After pumping beam focusing by the c j l i n d r i o a l  l e n s  (fl60mm) 

the maximum power deneity on the o e l l  reached more than 

100 NW/m2. A t  much a high power d e n s i t i e s  tho quarts  o e l l e  

broke a f t e r  several  pumping p U l 8 0 8  md eonetimer evon a f t e r  

tho mingle om. The c a v i t i e s  used were as ehort  as poseible 

( -10 mm) with f l a t  hi@ r e f l e c t i o n  d i e l e o t r i c  o r  aluminis- 

ed mirrors. But tho- the  maxinun i n t e n s i t i e s  of pump l i g h t  

were about 1000 times that of the threohold value f o r  p-tor- 

phony1 ladling a t  the rune experimental conditions the gene- 

r a t i o n  throehold f o r  compounds tes ted wae never reached. 

The fluorercence quantum y i e l d  ie known of t en  t o  be 

P 0,9J8 and GJl = 15 

higher a t  low temperaturea a8 compared to room one8 due t o  

slower intersystem crossing rate (for compounde with large 

SO- S, l eve l  eeparations)'. "hie lead6 to  lower threeholds 

of l o r  temperature generation lo-'*. We have ca r r i ed  out  

such experiment@ am well. But the generation threshold8 in 

low temperatures glaseee were not reached e i t h e r .  

Rather poor s p e c t r a l  propert ies  of  compounds can not be 

the only cause which prevent8 l a s e r  aot ion in tho eolut lons 

mentioned and a l i k e .  Evidently strong t r a n r i e n t  f luoresaence 

and or pump r ad ia t ion  absorption take place. Since an i m -  

portant influence of the l a e t  phenomenon on the generation 

propert ies  haa been pointed out l3, l4,  i t e  wide occurence 
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W DYE LASERS 655 

has been found t o  take place 15-20. Tranaient pump abeorpt- 

ion not only caumes higher generation threehold and woreene 

l a e e r  efficiency2' ,  but a leo leade to  the decomposition of 

an a c t i v e  compound due to  etepwiee two photon photochemical 

react ions.  Even the beet UV dye, p-terphenyl, which has the 

lowest induced pump ( = 265 nm) abeorption crose sec t ion  

19'20, euffere  photoionization de- among compounds studied 

tected by t raneient  photoconductivity i n  so lu t ions  . 
Therefore t o  g e t  l a e e r  a c t i o n  in 340 t o  300 nm s p e c t r a l  band 

one evidently must look f o r  an organic compound wi th  much 

b e t t e r  epec t r a l  and photochemical propert lee  than thoee of 

compounde mentioned above. 

1, 
22 

So the  f u l l  l i a t  of UV dye l a s e r s  known t o  UB looke li- 

ke that preeented in t ab l e .  Ispect ing the t ab le  one muet em- 

phaeise an important recent  advance, namely vapour phaee UV 

generation i n  POPOP. P i r e t l y  obtained 23, then etudied by 

Borieevitch and coworkere 24*25 and repeated by eeveral  

group8 o f  author8 26-28 vapour phase dye laser a c t i o n  is the 

r e a l  e tep towards a poesible nonoptical dye l a e e r  pumping. 

The p-terphenyl Beeme to  be another good candidate for UV 

vapour phaee laeing. 

The continuoue tuning ranges indicated i n  t ab le  corres- 

pond to  mingle solutione and eelect ive c a v i t i e e .  To enlarge 

tuning range one can uee binary eolutione 13 ,  which the sum 

amplification band is more wide than separate  component 

bande. The simple theory 29 which takes i n t o  account an 

inev i t ab le  i n  such a eyetern intermolecular s ing le t - s ing le t  

energy transfer, s a t i s f a c t o r i l y  explains experimental re- 
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656 ABAKUMOV ET AL. 

Sol- Laser wa- 
Compound vent ve length 

p-t erphenyl' C 341 1 
nm 

C,E 330-362 56 
E 347 56 

2,5-diphenyl-l,3-oxasole (PPO) c 357 57 
T 365,381 58 

2-blphenyl-5-(4'-butyl henyl)-l,3,4-oxadiazole T 357-395 59 

2,5-di-(4'-meth0xypheny1)-l,3,4-oxad1azole~ E 359,372 56 
E 345-385 15 

p -qua terph enyl 'I! 362-390 61 
2-( 4 :-chlorophenyl ) -5-phenyl-l , 3-oxarole C 363,382 58 
2-(4 -methoxyphenyl)-5-phenyl-l,3-orazole C 364,383 58 

( but yl- WDB 

2-(4'-methoxyphenyl)-5-phenyl-l,3,4-oxadiazole E 365 56 

2,5-di-biphenyl-1,3,4-oxadiazole (BBD) T 372-407 59 
2 4 4  '-lsopropylphenyl) -5-phenyl-lc3,4-oxadiaeoleT 370 49b 
2-pheny~-5-blphenyl-l,3,4-oxadiazole(PBD~~ T 373 58 

T 366-398 67 
2,S-diphenyl-furan (PPF)" T 374 60 

T 367-380 59 
2,5-di-(or -nephtyl)-l,3-o~aeole( d-"0) c 374 58 

P -na htylen-oxide E 375 62 
2-03 -nsphtyl~-5-phenyl-l,3-oxaeole( P-NPO) C 378 58 
2-( OL -naphtyl)-5-(~3 -naphtyl)-l,3,4-oxadiazole C 378 58 

1.4-diphenyl-butadiene T 383 1 
2-biphenyl-5-phcnyl-1,3-oxasole (BPO) C 384 58 
4-methylumbellif erone E 385-457 63 
2-(w-naphtyl)-5-phenyl-l, 3,4-oxadiasole(*-NPD) T 390 58 
1,4-di-(benroxarole)-benzene Ch 390 64 
2,5-di-(or-naphtyl)-1,3,4-oxadiaaole ( CV- -"D)' T 391 1 

T 385-417 59 
2-etyryl-5-biphenyl-1,3,4-oxadiacole T 391 1 
2 -a tyryl-5- ( p  -naph tyl ) - 1,3,4-oxadiaco 10 T 392-430 66 

sodium aallcylate E 395-418 61 
amino -benzoic acid T 398-406 61 

E 345-385 15 
2-( 4 '-e thylphenyl) -5-phenyl-l , 3-oxazole T 366,384 67 

T 385,399 60 

( c L N ~ N D  1 

2-( +S -naphtyl)-5-styryl-l, 3,4-oxadiazole T 399 65 
2-( Q -naphtyl)-5-phenyl-l,3-oxazole ( -NPO)= T 400 1 

') The solutione of compounds marked by an asterisk are ac- 
tive media of flashlamp pumped UV dye lasera a0 well 
(see 49b'50-53), (one o? them marked by a double asterisk las- 
ee in a binary solution with p-terphenyl 52). The record of 
the type 330-362 mean8 the contimoue tuning range and that of 
the type 365, 381 means two bande generation. C-cyclohexane, 
E-ethanol, T-toluene, Ch-chloroform. 
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LJV DYE LASERS 657 

s u l t e  29. Depending on contour  of  f luoreecence bands, t h e i r  

r e spec t ive  p o s i t i o n  and partial  component concent ra t ione  

one can ob ta in  laser a c t i o n  i n  a binarg s o l u t i o n  a t  any wave 

length  i n s i d e  the sum ampl i f i ca t ion  band i n  a nonse lec t ive  

c a v i t y  . 

Tunable UV Linht Generation by Methods of Non-Linear Optis& 

Second-harmonic (SH) of  and eum frequency w i t h  tunable  

dye l a s e r  l i g h t  f i r s t l y  repor ted  i n  1968 "-'* i e  now under- 

stood t o  be t he  only e f f e c t i v e  way to  g e t  tunable  coherent  

UV r a d i a t i o n  wi th  wave l eng th  beyond 300 nm. While d i rec t  

l a e e r  a c t i o n  eeems t o  be probable i n  the  340 t o  300 nm epect- 

ra l  range but y e t  no dye t o  l a s e  i n  i t  found t h i e  same way ie 

t h e  only one t o  ob ta in  tunable  U V  laeer l i g h t  with wave 

l eng ths  ehor t e r  than ca. 330 nm (see t ab le ) .  

Tunable UV l ight  a s  SH of a dye l a s e r  emission can now 

be obtained almost a t  any wave length from ca. 230 t o  385 nm 

(or 1onger)3~*33*3', the  s h o r t  wave length l i m i t  being deter- 

mined by phaee-matching condi t ions  i n  LFM c r y s t a l 1  33 ( t h i s  

l i m i t  for KDP and ADP is  nea r  260 nm). SH power and e f f ic i -  

ency o f  genera t ion  as high  as 1 MW '' and 18% " have been 

reported.  Tunable cw SH have a l s o  been repor ted  . 37 

Phaee-matching cond i t ions  f o r  sum f requency genera t ion  

(SFC) in widely used non l inea r  KDP and ADP c r y s t a l 1 8  (a t  

room temperatures)  permit one to  g e t  tunable  r a d i a t i o n  w i t h  

ehor t  wave length l i m i t  of  about 213 nm. !Punable SFG w i t h  

wave l eng ths  beyond the  s h o r t  wave length l i m i t  f o r  SHG and 
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658 ABAKUMOV ET AL. 

near  t he  SFG l i m i t  have r e c e n t l y  been obtained i n  the  

216 - 226 38, 218 - 219 ’’ and 216 - 234 mICO ranges by mmm- 

ing Nd3+-glass laser fundamental and o r  i t s  harmonic frequen- 

c i e e  with thoee of a dye l a s e r  i n  d i f f e r e n t  echemes of 

t h r e e  383 ’’ and four 40 frequency non-l inear  i n t e r a c t i o n .  

Sum f requencies  i n  241 - 327 nm range have a l s o  been r epor t -  

ed 32’39*41-44, but  SHG B$ more eimple and e f f e c t i v e  i e  b e t t -  

er  than SFC f o r  t h i e  e p e c t r a l  range (a new non-linear crye- 

ta l l ,  KB205, having phaeematching condi t ion  f o r  SHC down t o  

216’8 IM hae r e c e n t l y  been diecovered 

Sum f requencies  i n  WV reg ion  can be obtained by frequ-  

ency mixing i n  metal vapoure ”. A method which eneuree an  

increaee  i n  e f f i c i ency  of  t h i e  non-l inear  i n t e r a c t i o n  by 

eevera l  o rde r s  of magnitude have r ecen t ly  been offered&’ 47 
and the  ahor tee t  wave length8 corresponded t o  the  t h i r d  har- 

monic of  a dye l a a e r  near  155 nm and t o  the  sum frequency 

tunable  in the 177,8 - 181,7 nm range been obtained Lc6. The 

au thore  46 have e t a t ed  the  ehor t  wave length l i m i t  i n  t h i e  

method t o  be near  80 nm. 

There i s  i n  p r i n c i p l e  a t  l e a e t  one more way t o  g e t  tun- 

ab le  coherent  UV l igh t .  Thie way i s  t o  genera te  high o rde r  

ant i -Stokes s t imulated Rama? e c a t t e r i n g  (SRS) i n  an ordinary  

R a m a n  medium pumped by 8 powerful tunable  dye l a e e r  IC8 o r  

low o rde r  Stokee SRS i n  a var ious  Raman media pumped by a 

powerful UV l a s e r  l i n e s .  But mainly becauee of SRS having 

threehold and some o t h e r  evident  ehortcominge not t o  be d l s -  

cussed here  both theee approachee do not  seem promising. 
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W DYE LASERS 659 

Flashlamp Pumped W Dye Losere. 

Laser pumped UV dye l a e e r e  have lovr both the ove ra l l  

eff ic iency and the output pulse energy. By uee of flashlamp 

pumping these parametere of an W dye l a s e r  can be consider- 

ably increaeed. Therefore much a t t e n t i o n  hae been paid to  

development of the f a e t  flaehlampe and low inductance d i s -  

charge c i r c u i t 8  capable t o  provide l i g h t  powers e u f f i c l e n t  

t o  pump UV dye8 t o  laeing threeholde 49-53. All eyeteme de- 

veloped 49-52 except t he  recent  one 53 t o  be diecussed la- 

t e r  a r e  e imllar  In eeaen t i a l  d e t a i l s .  They coneieted of a 

ahort  (35 - 50 mm) coaxial  xenon f i l l e d  flaahlamp with a 

current  r e tu rn  lead, a high voltage lor inductance capaci- 

t o r  of up to  0.08 F and a e r l t c h  connected i n  ee r i ee  t o  

the lamp. The coa r i a l  lamp diecharge annulus v a r i e s  from 

0 .3  t o  0.5 mm. For such a diecharge c i r c u i t  the l i g h t  pulee 

r i e e  time of 50 t o  80 ns, i t e  FWHM pulse time of 150 t o  

200 ne, end the maximum e l e c t r i c a l  energy of about 20 J a r e  

typ ica l  valuee. Up to  da t e  the eff ic iency of flashlamp pump- 

ed UV dye l a e e r  (they a r e  marked by an a e t e r i s k  i n  t a b l e )  

a r e  of the order of 0.01%. 

s 

The system described in a recent  paper by Morrow and 

Price 53 coneiderably d i f f e r e  from above mentioned ones. 

The much l a r g e r  lamp used d i f f e r e  i n  both the construct ion 

and a l l  denensions except the diecharge annulus (0,5 mm). 

Being f u l l y  fueed i t  hae no epoxy eealed j o i n t s .  By-elect- 

rode bal las t  volumes help i t  t o  stand l a rge  dymamic e t r ees -  
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660 ABAKUMOV ET AL. 

ee and to  dieeipate  100 J e l e c t r i c 8 1  energy depoeited i n t o  

diecharge without breaking. The lamp l i gh t  pulse r i s e  time 

and p-terphenyl dye l a e e r  pulee FWHM a r e  much longer and 

equal t o  150 and 500 ne reepectively.  Comparatively high 

output l aee r  pulee energy of 0,Ol J wae obtained. 

In general  l e e s  dyee show l a e e r  ac t ion  under fast  

flaehlamp pumping ae compared with l a e e r  pumping and eome 

dyee ehoning good performance in the l a t t e r  caee have high 

generation threeholds or do not l a s e  a t  a l l  in the former 

one 49b. There can be eeveral  caueee leading to  high l a e e r  

threaholde in cam of flaehlamp pumping. Most of them a r e  

common for both l a e e r  and flaehlamp pumping but t h e i r  in- 

fluence on generation propert iee  of a dye l a s e r  i e  much 

more prominent in the l a t t e r  caee. The well  known t r i p l e t  

s t a t e  e f f e c t e  leading t o  exceeeive depletion of the dye 

ground e t a t e  population or t o  l a e e r  emieeion absorption by 

t r i p l e t  moleculee a r e  maybe the eimpleet harmful e f f e c t s  in 

a flaehlamp pumped dye l aee r .  Due t o  f a e t  flaehlamp pump 

emiseion being that of  a high temperature (ca .  40000-70000K) 

black-body r ad ia to r  w i t h  the continuoue emieeion epectrum 

traneient  pump abeorption by excited e ing le t  and t r i p l e t  mo- 

leculee neceeearity takee place r eeu l t ing  i n  considerable 

pump energy loeeee, higher threeholde, more prominent ther- 

mal e f f ec t e ,  dye photolyeie e t c .  There i e  aleo o m  pecul iar  

important phonomenon inherent only t o  flaehlamp pumping 
which ha8 been pointed out by Stepanov and Batyrev 69 . 
Namely t h i e  i e  the amplif icat ion of pump rad ia t ion  by etimu- 

l a t ed  emieeion i n  the fluoreecenaa band of an ac t ive  medium. 
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This phenomenon i e  in fac t  8n a d d i t i o n a l  e f f e c t i v e  rou te  f o r  

deac t iva t ion  of exc i ted  singlet  e t a t e e  wi th  obvioue undes i r -  

a b l e  coneequences. 

For UV dye lasere pumped by s h o r t  flaehlamp pulsee  the  

thermo- and acoueto-opt ical  c a v i t y  d i e t o r t i o n s  are lee8 i m -  

po r t an t  i n  determining output  laser parameters than  f o r  long 

pulse  flaehlamp pumped v i e i b l e  dye lasers. As pointed o u t  by 

Smolekaya and Rubinov 54, t he  c a v i t y  thermo-optical d i s t o r t -  

i o n  a t  ehor t  pulee pumping should be descr ibed by the  r e -  

f r a c t i v e  index d e r i v a t i v e  value (dn/dT), (a t  constant volume) 

r a t h e r  than  (dn/dT) (a t  cons tan t  preesure)  commonly ueed. 

The former value i s  much l e e s  than the l a t t e r  one and can 

even have the  inve r se  s i g n  55. By t h e  end of a dye laeer 

pulee the  shock wave runs  only  a small d i s t a n c e  i n t o  t h e  bulk 

o f  eo lu t ion  so t h a t  i t  a l s o  does not  considerably d i s t u r b  i t s  

o p t i c a l  homogeneity. 

I! 

Conclueion. 

The f u t h e r  search of  t h e  UV dyes is necessary not  only 

t o  f i l l  t he  gap between expected and a l ready  r e a l i z e d  wave 

l eng th  l i m i t e  (300 - 330 nm) but ale0 t o  f i n d  good dyes cap- 

able  t o  lase w i t h  low threeholde pr imar i ly  under flaehlamp 

pumping. It is a l so  necessary t o  Puther  s tudy photophysical  

and photochemical processes  which take  p laces  i n  s o l u t i o n s  

under powerful photoexci ta t ion  t o  f u l l y  understand l o a s  

sources  and t o  f i n d  ways t o  l ea sen  t h e i r  i n f luence  on B dye 
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l a s e r  performance and long  term p h o t o s t a b i l i t y  o f  a c t i v e  me- 

d i a .  From p r a c t i c a l  po in t  of view f laehlamp pumped UV dye la- 

sers are of p a r t i c u l a r  importance and f u t h e r  work are needed 

t o  improve cons iderably  t h e i r  ou tpu t  parameters  and a l s o  t o  

run them i n  quasicont inuous h igh  pu l se  r e p e t i t i o n  ra te  mode 

o f  ope ra t ion .  
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